Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
1.
Biofabrication ; 16(1)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37972398

RESUMO

Embryoid bodies (EBs) and self-organizing organoids derived from human pluripotent stem cells (hPSCs) recapitulate tissue development in a dish and hold great promise for disease modeling and drug development. However, current protocols are hampered by cellular stress and apoptosis during cell aggregation, resulting in variability and impaired cell differentiation. Here, we demonstrate that EBs and various organoid models (e.g., brain, gut, kidney) can be optimized by using the small molecule cocktail named CEPT (chroman 1, emricasan, polyamines, trans-ISRIB), a polypharmacological approach that ensures cytoprotection and cell survival. Application of CEPT for just 24 h during cell aggregation has long-lasting consequences affecting morphogenesis, gene expression, cellular differentiation, and organoid function. Various qualification methods confirmed that CEPT treatment enhanced experimental reproducibility and consistently improved EB and organoid fitness as compared to the widely used ROCK inhibitor Y-27632. Collectively, we discovered that stress-free cell aggregation and superior cell survival in the presence of CEPT are critical quality control determinants that establish a robust foundation for bioengineering complex tissue and organ models.


Assuntos
Corpos Embrioides , Células-Tronco Pluripotentes , Humanos , Corpos Embrioides/metabolismo , Reprodutibilidade dos Testes , Organoides , Diferenciação Celular
2.
J Cell Mol Med ; 27(14): 2045-2058, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315183

RESUMO

Embryonic stem (ES) cells differentiate towards all three germ layers, including cardiac cells and leukocytes, and may be therefore suitable to model inflammatory reactions in vitro. In the present study, embryoid bodies differentiated from mouse ES cells were treated with increasing doses of lipopolysaccharide (LPS) to mimic infection with gram-negative bacteria. LPS treatment dose-dependent increased contraction frequency of cardiac cell areas and calcium spikes and increased protein expression of α-actinin. LPS treatment increased the expression of the macrophage marker CD68 and CD69, which is upregulated after activation on T cells, B cells and NK cells. LPS dose-dependent increased protein expression of toll-like receptor 4 (TLR4). Moreover, upregulation of NLR family pyrin domain containing 3 (NLRP3), IL-1ß and cleaved caspase 1 was observed, indicating activation of inflammasome. In parallel, generation of reactive oxygen species (ROS), nitric oxide (NO), and expression of NOX1, NOX2, NOX4 and eNOS occurred. ROS generation, NOX2 expression and NO generation were downregulated by the TLR4 receptor antagonist TAK-242 which abolished the LPS-induced positive chronotropic effect of LPS. In conclusion, our data demonstrate that LPS induced a pro-inflammatory cellular immune response in tissues derived from ES cells, recommending the in vitro model of embryoid bodies for inflammation research.


Assuntos
Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Corpos Embrioides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamassomos/metabolismo , Inflamação
3.
Biol Open ; 12(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272627

RESUMO

Genetic studies place Tbx5 at the apex of the sinoatrial node (SAN) transcriptional program. To understand its role in SAN differentiation, clonal embryonic stem (ES) cell lines were made that conditionally overexpress Tbx5, Tbx3, Tbx18, Shox2, Islet-1, and MAP3k7/TAK1. Cardiac cells differentiated using embryoid bodies (EBs). EBs overexpressing Tbx5, Islet1, and TAK1 beat faster than cardiac cells differentiated from control ES cell lines, suggesting possible roles in SAN differentiation. Tbx5 overexpressing EBs showed increased expression of TAK1, but cardiomyocytes did not differentiate as SAN cells. EBs showed no change in the expression of the SAN transcription factors Shox2 and Islet1 and decreased expression of the SAN channel protein HCN4. EBs constitutively overexpressing TAK1 direct cardiac differentiation to the SAN fate but have reduced phosphorylation of its targets, p38 and Jnk. This opens the possibility that blocking the phosphorylation of TAK1 targets may have the same impact as forced overexpression. To test this, we treated EBs with 5z-7-Oxozeanol (OXO), an inhibitor of TAK1 phosphorylation. Like TAK1 overexpressing cardiac cells, cardiomyocytes differentiated in the presence of OXO beat faster and showed increased expression of SAN genes (Shox2, HCN4, and Islet1). This suggests that activation of the SAN transcriptional network can be accomplished by blocking the phosphorylation of TAK1.


Assuntos
Corpos Embrioides , Miócitos Cardíacos , Corpos Embrioides/metabolismo , Nó Sinoatrial/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Diferenciação Celular/genética
4.
Stem Cell Res ; 71: 103141, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37320987

RESUMO

DNMT1 overexpression is reported in disorders like schizophrenia, bipolar, epilepsy and multiple cancer types. Here, we used non-homologous recombination to generate R1Dnmt1WT-1, a mouse embryonic stem cell (ESC) line carrying a Dnmt1 cDNA transgene to achieve about two-fold overexpression. This ESC line showed increased transcript levels of Sox2 pluripotency marker. R1Dnmt1WT-1 embryoid bodies showed increased levels of Lefty1 (endoderm), Tbxt and Acta2 (mesoderm), and Pax6 (ectoderm) transcripts. This new line showed normal karyotype and microsatellite profiles making it useful in studying carcinogenesis and abnormal neurogenesis due to DNMT1 overexpression.


Assuntos
Corpos Embrioides , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Diferenciação Celular , Camundongos Transgênicos , Linhagem Celular , Corpos Embrioides/metabolismo , Endoderma/metabolismo
5.
Macromol Biosci ; 23(7): e2300021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36871184

RESUMO

Microenvironmental factors, including substrate stiffness, regulate stem cell behavior and differentiation. However, the effects of substrate stiffness on the behavior of induced pluripotent stem cell (iPSC)- derived embryoid bodies (EB) remain unclear. To investigate the effects of mechanical cues on iPSC-EB differentiation, a 3D hydrogel-sandwich culture (HGSC) system is developed that controls the microenvironment surrounding iPSC-EBs using a stiffness-tunable polyacrylamide hydrogel assembly. Mouse iPSC-EBs are seeded between upper and lower polyacrylamide hydrogels of differing stiffness (Young's modulus [E'] = 54.3 ± 7.1 kPa [hard], 28.1 ± 2.3 kPa [moderate], and 5.1 ± 0.1 kPa [soft]) and cultured for 2 days. HGSC induces stiffness-dependent activation of the yes-associated protein (YAP) mechanotransducer and actin cytoskeleton rearrangement in the iPSC-EBs. Moreover, moderate-stiffness HGSC specifically upregulates the mRNA and protein expression of ectoderm and mesoderm lineage differentiation markers in iPSC-EBs via YAP-mediated mechanotransduction. Pretreatment of mouse iPSC-EBs with moderate-stiffness HGSC promotes cardiomyocyte (CM) differentiation and structural maturation of myofibrils. The proposed HGSC system provides a viable platform for investigating the role of mechanical cues on the pluripotency and differentiation of iPSCs that can be beneficial for research into tissue regeneration and engineering.


Assuntos
Hidrogéis , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Hidrogéis/química , Corpos Embrioides/metabolismo , Miócitos Cardíacos , Mecanotransdução Celular , Diferenciação Celular
6.
Birth Defects Res ; 115(2): 224-239, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36349436

RESUMO

BACKGROUND: Remdesivir is an antiviral drug approved for the treatment of COVID-19, whose developmental toxicity remains unclear. More information about the safety of remdesivir is urgently needed for people of childbearing potential, who are affected by the ongoing pandemic. Morphogenetic embryoid bodies (MEBs) are three-dimensional (3D) aggregates of pluripotent stem cells that recapitulate embryonic body patterning in vitro, and have been used as effective embryo models to detect the developmental toxicity of chemical exposures specifically and sensitively. METHODS: MEBs were generated from mouse P19C5 and human H9 pluripotent stem cells, and used to examine the effects of remdesivir. The morphological effects were assessed by analyzing the morphometric parameters of MEBs after exposure to varying concentrations of remdesivir. The molecular impact of remdesivir was evaluated by measuring the transcript levels of developmental regulator genes. RESULTS: The mouse MEB morphogenesis was impaired by remdesivir at 1-8 µM. Remdesivir affected MEBs in a manner dependent on metabolic conversion, and its potency was higher than GS-441524 and GS-621763, presumptive anti-COVID-19 drugs that act similarly to remdesivir. The expressions of developmental regulator genes, particularly those involved in axial and somite patterning, were dysregulated by remdesivir. The early stage of MEB development was more vulnerable to remdesivir exposure than the later stage. The morphogenesis and gene expression profiles of human MEBs were also impaired by remdesivir at 1-8 µM. CONCLUSIONS: Remdesivir impaired mouse and human MEBs at concentrations that are comparable to the therapeutic plasma levels in humans, urging further investigation into the potential impact of remdesivir on developing embryos.


Assuntos
COVID-19 , Células-Tronco Pluripotentes , Humanos , Corpos Embrioides/metabolismo , COVID-19/metabolismo , Tratamento Farmacológico da COVID-19 , Morfogênese
7.
Biochem Biophys Res Commun ; 629: 78-85, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113181

RESUMO

Histone acetylation and deacetylation are associated with diverse biological phenomena via gene transcription, and histone deacetylases (HDACs) regulate protein deacetylation. HDAC8 is associated with childhood neurological disorders that develop in the uterus and may contribute to neurodevelopment. In our previous studies, we found that HDAC8 regulates neuronal differentiation in P19 pluripotent embryonic carcinoma cells (P19EC cells) by regulating embryoid body (EB) formation. However, the mechanism through which HDAC8 is involved in EB formation and neuronal differentiation remains unclear. Here, we show that HDAC8 regulates EB formation and neuronal differentiation by regulating the canonical Hedgehog (Hh) signaling pathway in P19EC cells. We found that HDAC8 is possibly involved in regulating the expression of the Smoothened receptor (Smo), an important receptor in canonical Hh signaling, and treatment with a Smo agonist restored EB formation ability, which was reduced in HDAC8 knockout P19EC cells. Our results demonstrate that HDAC8 functions in EB formation, which is involved in the Hh signaling pathway that is important for embryonic development.


Assuntos
Corpos Embrioides , Proteínas Hedgehog , Corpos Embrioides/metabolismo , Proteínas Hedgehog/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(6): 929-936, 2022 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-35790445

RESUMO

OBJECTIVE: To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms. METHODS: EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, ß-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment. RESULTS: The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of ß-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, ß-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05). CONCLUSION: Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/ß-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.


Assuntos
Equinomicina , Células-Tronco Pluripotentes Induzidas , Equinomicina/metabolismo , Corpos Embrioides/metabolismo , Humanos , Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , beta Catenina/metabolismo
9.
F1000Res ; 11: 324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811797

RESUMO

Animal models have provided many insights into ocular development and disease, but they remain suboptimal for understanding human oculogenesis. Eye development requires spatiotemporal gene expression patterns and disease phenotypes can differ significantly between humans and animal models, with patient-associated mutations causing embryonic lethality reported in some animal models. The emergence of human induced pluripotent stem cell (hiPSC) technology has provided a new resource for dissecting the complex nature of early eye morphogenesis through the generation of three-dimensional (3D) cellular models. By using patient-specific hiPSCs to generate in vitro optic vesicle-like models, we can enhance the understanding of early developmental eye disorders and provide a pre-clinical platform for disease modelling and therapeutics testing. A major challenge of in vitro optic vesicle generation is the low efficiency of differentiation in 3D cultures. To address this, we adapted a previously published protocol of retinal organoid differentiation to improve embryoid body formation using a microwell plate. Established morphology, upregulated transcript levels of known early eye-field transcription factors and protein expression of standard retinal progenitor markers confirmed the optic vesicle/presumptive optic cup identity of in vitro models between day 20 and 50 of culture. This adapted protocol is relevant to researchers seeking a physiologically relevant model of early human ocular development and disease with a view to replacing animal models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Corpos Embrioides/metabolismo , Humanos , Retina , Fatores de Transcrição/metabolismo
10.
Stem Cell Res ; 61: 102770, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390758

RESUMO

The Inhibitor of disheveled and axin (Idax) and its ortholog the Retinoid inducible nuclear factor (Rinf) are DNA binding proteins with nuclear and cytoplasmic functions. Rinf is expressed in embryonic stem cells (ESCs) where it regulates transcription of the Ten-eleven translocation (Tet) enzymes, promoting neural and suppressing mesendoderm/trophectoderm differentiation. Here, we find that Idax, which is not expressed in ESCs, is induced upon differentiation. Like Rinf, Idax facilitates neural and silences trophectodermal programs. Individual or combined loss of Idax and Rinf led to downregulation of neural and upregulation of trophectoderm markers during differentiation of ESCs to embryoid bodies as well as during directed differentiation of ESCs to neural progenitor cells (NPCs) and trophoblast-like cells. These defects resemble those of Tet-deficient ESCs. Consistently, Tet genes are direct targets of Idax and Rinf, and loss of Idax and Rinf led to downregulation of Tet enzymes during ESC differentiation to NPCs and trophoblast-like cells. While Idax and Rinf single and double knockout (DKO) mice were viable and overtly normal, DKO embryos had reduced expression of several NPC markers in embryonic forebrains and deregulated expression of selected trophoblast markers in placentas. NPCs derived from DKO forebrains had reduced self-renewal while DKO placentas had increased junctional zone and reduced labyrinth layers. Together, our findings establish Idax and Rinf as regulators of Tet enzymes for proper differentiation of ESCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neurais , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo
11.
Cancer Genomics Proteomics ; 19(2): 178-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35181587

RESUMO

BACKGROUND: Testicular germ cell tumours (TGCTs) are the most frequent tumour type among young, adult men. TGCTs can be efficiently treated, but metastases of the teratoma subtype, for which there are no circulating biomarkers, represent a challenge. MATERIALS AND METHODS: Global microRNA expression in teratoma tissue and embryoid bodies was assessed using next-generation sequencing. Levels of microRNAs identified as potential biomarkers were obtained from serum of patients with teratoma and matched healthy men. RESULTS: We identified miR-222-5p, miR-200a-5p, miR-196b-3p and miR-454-5p as biomarker candidates from the tumour tissue and embryoid body screening but the expression of these microRNAs was very low in serum and not statistically different between patients and controls. miR-375-3p was highly expressed, being highest in patients with teratoma (p=0.012) but the levels of expression in serum from these patients and healthy controls overlapped. miR-371a-3p was not expressed in serum from patients with pure teratoma, only in patients with mixed tumours. CONCLUSION: The microRNA profiles of the teratoma subtype of TGCT and embryoid bodies were obtained and assessed for candidate circulating biomarkers, but none with high sensitivity and specificity for teratoma were identified in our study. We conclude that neither the proposed teratoma marker miR-375-3p nor miR-371a-3p are suitable as circulating teratoma markers.


Assuntos
MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Teratoma , Neoplasias Testiculares , Adulto , Biomarcadores Tumorais/genética , Corpos Embrioides/metabolismo , Corpos Embrioides/patologia , Humanos , Masculino , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/genética , Teratoma/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia
12.
Biomaterials ; 282: 121389, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121357

RESUMO

Colonies of induced pluripotent stem cells (iPSCs) reveal aspects of self-organization even under culture conditions that maintain pluripotency. To investigate the dynamics of this process under spatial confinement, we used either polydimethylsiloxane (PDMS) pillars or micro-contact printing of vitronectin. There was a progressive upregulation of OCT4, E-cadherin, and NANOG within 70 µm from the outer rim of iPSC colonies. Single-cell RNA-sequencing and spatial reconstruction of gene expression demonstrated that OCT4high subsets, residing at the edge of the colony, have pronounced up-regulation of the TGF-ß pathway, particularly of NODAL and its inhibitor LEFTY. Interestingly, after 5-7 days, iPSC colonies detached spontaneously from micro-contact printed substrates to form 3D aggregates. This new method allowed generation of embryoid bodies (EBs) of controlled size without enzymatic or mechanical treatment. Within the early 3D aggregates, radial organization and differential gene expression continued in analogy to the changes observed during self-organization of iPSC colonies. Early self-detached aggregates revealed up-regulated germline-specific gene expression patterns as compared to conventional EBs. However, there were no marked differences after further directed differentiation toward hematopoietic, mesenchymal, and neuronal lineages. Our results provide further insight into the gradual self-organization within iPSC colonies and at their transition into EBs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular/fisiologia , Corpos Embrioides/metabolismo , Regulação para Cima
13.
Elife ; 112022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142607

RESUMO

Practically all studies of gene expression in humans to date have been performed in a relatively small number of adult tissues. Gene regulation is highly dynamic and context-dependent. In order to better understand the connection between gene regulation and complex phenotypes, including disease, we need to be able to study gene expression in more cell types, tissues, and states that are relevant to human phenotypes. In particular, we need to characterize gene expression in early development cell types, as mutations that affect developmental processes may be of particular relevance to complex traits. To address this challenge, we propose to use embryoid bodies (EBs), which are organoids that contain a multitude of cell types in dynamic states. EBs provide a system in which one can study dynamic regulatory processes at an unprecedentedly high resolution. To explore the utility of EBs, we systematically explored cellular and gene expression heterogeneity in EBs from multiple individuals. We characterized the various cell types that arise from EBs, the extent to which they recapitulate gene expression in vivo, and the relative contribution of technical and biological factors to variability in gene expression, cell composition, and differentiation efficiency. Our results highlight the utility of EBs as a new model system for mapping dynamic inter-individual regulatory differences in a large variety of cell types.


One major goal of human genetics is to understand how changes in the way genes are regulated affect human traits, including disease susceptibility. To date, most studies of gene regulation have been performed in adult tissues, such as liver or kidney tissue, that were collected at a single time point. Yet, gene regulation is highly dynamic and context-dependent, meaning that it is important to gather data from a greater variety of cell types at different stages of their development. Additionally, observing which genes switch on and off in response to external treatments can shed light on how genetic variation can drive errors in gene regulation and cause diseases. Stem cells can produce more cells like themselves or differentiate ­ acquire the characteristics ­ of many cell types. These cells have been used in the laboratory to research gene regulation. Unfortunately, these studies often fail to capture the complex spatial and temporal dynamics of stem cell differentiation; in particular, these studies are unable to observe gene regulation in the transient cell types that appear early in embryonic development. To overcome these limitations, scientists developed systems such as embryoid bodies: three-dimensional aggregates of stem cells that, when grown under certain conditions, spontaneously develop into a variety of cell types. Rhodes, Barr et al. wanted to assess the utility of embryoid bodies as a model to study how genes are dynamically regulated in different cell types, by different individuals who have distinct genetic makeups. To do this, they grew embryoid bodies made from human stem cells from different individuals to examine which genes switched on and off as the stem cells that formed the embryoid bodies differentiated into different types of cells. The results showed that it was possible to grow embryoid bodies derived from genetically distinct individuals that consistently produce diverse cell types, similar to those found during human fetal development. Rhodes, Barr et al.'s findings suggest that embryoid bodies are a useful model to study gene regulation across individuals with different genetic backgrounds. This could accelerate research into how genetics are associated with disease by capturing gene regulatory dynamics at an unprecedentedly high spatial and temporal resolution. Additionally, embryoid bodies could be used to explore how exposure to different environmental factors during early development affect disease-related outcomes in adulthood in different individuals.


Assuntos
Diferenciação Celular/genética , Corpos Embrioides/citologia , Regulação da Expressão Gênica , Linhagem Celular , Corpos Embrioides/metabolismo , Feminino , Genoma Humano , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Análise de Sequência de RNA
14.
PLoS One ; 17(1): e0261950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995303

RESUMO

Mouse embryonic stem cells (mESCs) can be manipulated in vitro to recapitulate the process of erythropoiesis, during which multipotent cells undergo lineage specification, differentiation and maturation to produce erythroid cells. Although useful for identifying specific progenitors and precursors, this system has not been fully exploited as a source of cells to analyse erythropoiesis. Here, we establish a protocol in which characterised erythroblasts can be isolated in a scalable manner from differentiated embryoid bodies (EBs). Using transcriptional and epigenetic analysis, we demonstrate that this system faithfully recapitulates normal primitive erythropoiesis and fully reproduces the effects of natural and engineered mutations seen in primary cells obtained from mouse models. We anticipate this system to be of great value in reducing the time and costs of generating and maintaining mouse lines in a number of research scenarios.


Assuntos
Diferenciação Celular , Corpos Embrioides/metabolismo , Eritroblastos/metabolismo , Eritropoese , Modelos Biológicos , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Linhagem Celular , Corpos Embrioides/citologia , Eritroblastos/citologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia
15.
Methods Mol Biol ; 2549: 153-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33772462

RESUMO

Differentiating human induced pluripotent stem cells (iPSCs) into multipotent mesenchymal stem/stromal cells (MSCs) offers a renewable source of therapeutically invaluable cells. However, the process of MSC derivation from iPSCs suffers from an undesirably low efficiency. In this chapter, we present an optimized procedure to produce MSCs from human iPSCs with a high efficiency. The protocol depends on the generation of embryoid bodies (EBs) and requires the treatment of EBs with transforming growth factor beta 1 (TGF-ß1). The resulting MSCs can be purified based on the expression of CD73, CD105, and CD90 markers and expanded for multiple passages without losing their characteristics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Diferenciação Celular , Corpos Embrioides/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Antígenos Thy-1/metabolismo
16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-941023

RESUMO

OBJECTIVE@#To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms.@*METHODS@#EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, β-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment.@*RESULTS@#The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of β-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, β-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05).@*CONCLUSION@#Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/β-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.


Assuntos
Humanos , Equinomicina/metabolismo , Corpos Embrioides/metabolismo , Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , beta Catenina/metabolismo
17.
J Vis Exp ; (178)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927621

RESUMO

Chromosomal aneuploidies cause severe congenital malformations including central nervous system malformations and fetal death. Prenatal genetic screening is purely diagnostic and does not elucidate disease mechanism. Although cells from aneuploid fetuses are valuable biological material bearing the chromosomal aneuploidy, these cells are short lived, limiting their use for downstream research experiments. Generation of induced pluripotent stem cell (iPSC) models is an effective method of cell preparation for perpetual conservation of aneuploid traits. They are self-renewing and differentiate into specialized cells reminiscent of embryonic development. Thus, iPSCs serve as excellent tools to study early developmental events. Turner syndrome (TS) is a rare condition associated with a completely or partially missing X chromosome. The syndrome is characterized by infertility, short stature, endocrine, metabolic, autoimmune and cardiovascular disorders and neurocognitive defects. The following protocol describes isolation and culturing of fibroblasts from TS (45XO) fetal tissue, generation of integration free TSiPSCs through delivery of episomal reprogramming plasmids by nucleofection followed by characterization. The reprogramming TSiPSCs were initially screened by live cell alkaline phosphatase staining followed by extensive probing for pluripotency biomarkers. Selected colonies were mechanically dissected, passaged several times and stable self-renewing cells were used for further experiments. The cells expressed pluripotency transcription factors OCT4, NANOG, SOX2, cell surface markers SSEA 4 and TRA1-81 typical of pluripotent stem cells. The original 45XO karyotype was retained post reprogramming. The TSiPSCs were able to form embryoid bodies and differentiate into cells of endoderm, mesoderm and ectoderm expressing lineage specific biomarkers ((SRY BOX17), (MYOSIN VENTRICULAR HEAVY CHAINα/ß), (ßIII TUBULIN)). The exogenous episomal plasmids were lost spontaneously and not detected after passage 15 in cells. These TSiPSCs are a valuable cellular resource for modelling defective molecular and cellular neurodevelopment causing neurocognitive deficits associated with Turner syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Turner , Diferenciação Celular/genética , Reprogramação Celular , Corpos Embrioides/metabolismo , Feminino , Fibroblastos , Humanos , Fator 3 de Transcrição de Octâmero/genética , Gravidez , Síndrome de Turner/genética , Síndrome de Turner/metabolismo
18.
Nat Commun ; 12(1): 7322, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916498

RESUMO

Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.


Assuntos
Corpos Embrioides/citologia , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Reprogramação Celular , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/metabolismo , Endoderma/embriologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , RNA-Seq
19.
Toxicol Appl Pharmacol ; 433: 115792, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742744

RESUMO

Concurrent with the '3R' principle, the embryonic stem cell test (EST) using mouse embryonic stem cells, developed in 2000, remains the solely accepted in vitro method for embryotoxicity testing. However, the scope and implementation of EST for embryotoxicity screening, compliant with regulatory requirements, are limited. This is due to its technical complexity, long testing period, labor-intensive methodology, and limited endpoint data, leading to misclassification of embryotoxic potential. In this study, we used human induced pluripotent stem cell (hiPSC)-derived embryoid bodies (EB) as an in vitro model to investigate the embryotoxic effects of a carefully selected set of pharmacological compounds. Morphology, viability, and differentiation potential were investigated after exposing EBs to folic acid, all-trans-retinoic acid, dexamethasone, and valproic acid for 15 days. The results showed that the compounds differentially repressed cell growth, compromised morphology, and triggered apoptosis in the EBs. Further, transcriptomics was employed to compare subtle temporal changes between treated and untreated cultures. Gene ontology and pathway analysis revealed that dysregulation of a large number of genes strongly correlated with impaired neuroectoderm and cardiac mesoderm formation. This aberrant gene expression pattern was associated with several disorders of the brain like mental retardation, multiple sclerosis, stroke and of the heart like dilated cardiomyopathy, ventricular tachycardia, and ventricular arrhythmia. Lastly, these in vitro findings were validated using in ovo chick embryo model. Taken together, pharmacological compound or drug-induced defective EB development from hiPSCs could potentially be used as a suitable in vitro platform for embryotoxicity screening.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Teratógenos/toxicidade , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula , Embrião de Galinha , Dexametasona/toxicidade , Relação Dose-Resposta a Droga , Corpos Embrioides/metabolismo , Corpos Embrioides/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Concentração Inibidora 50 , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurogênese/efeitos dos fármacos , Medição de Risco , Tretinoína/toxicidade , Ácido Valproico/toxicidade
20.
Cells ; 10(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572048

RESUMO

Human pluripotent stem cells (hPSCs) are not only a promising tool to investigate differentiation to many cell types, including the germline, but are also a potential source of cells to use for regenerative medicine purposes in the future. However, current in vitro models to generate human primordial germ cell-like cells (hPGCLCs) have revealed high variability regarding differentiation efficiency depending on the hPSC lines used. Here, we investigated whether differences in X chromosome inactivation (XCI) in female hPSCs could contribute to the variability of hPGCLC differentiation efficiency during embryoid body (EB) formation. For this, we first characterized the XCI state in different hPSC lines by investigating the expression of XIST and H3K27me3, followed by differentiation and quantification of hPGCLCs. We observed that the XCI state did not influence the efficiency to differentiate to hPGCLCs; rather, hPSCs derived from cells isolated from urine showed an increased trend towards hPGCLCs differentiation compared to skin-derived hPSCs. In addition, we also characterized the XCI state in the generated hPGCLCs. Interestingly, we observed that independent of the XCI state of the hPSCs used, both hPGCLCs and soma cells in the EBs acquired XIST expression, indicative of an inactive X chromosome. In fact, culture conditions for EB formation seemed to promote XIST expression. Together, our results contribute to understanding how epigenetic properties of hPSCs influence differentiation and to optimize differentiation methods to obtain higher numbers of hPGCLCs, the first step to achieve human in vitro gametogenesis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Corpos Embrioides/citologia , Rim/citologia , Células-Tronco Pluripotentes/citologia , Pele/citologia , Inativação do Cromossomo X , Corpos Embrioides/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Rim/metabolismo , Masculino , Células-Tronco Pluripotentes/metabolismo , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...